estimation
¶
This module contains the functionality for managing the inputs and outputs of an estimation.
Functions¶
|
Function to simulate observations. |
|
Function to compute the azimuth angle, elevation angle and range at a ground station. |
|
Function to propagate system covariance through time. |
|
Function to propagate system formal errors through time. |
Function for creating an |
- simulate_observations(simulation_settings: list[tudat::simulation_setup::ObservationSimulationSettings<double>], observation_simulators: list[tudatpy.kernel.numerical_simulation.estimation.ObservationSimulator], bodies: tudatpy.kernel.numerical_simulation.environment.SystemOfBodies) tudat::observation_models::ObservationCollection<double, double, 0> ¶
Function to simulate observations.
Function to simulate observations from set observation simulators and observation simulator settings. Automatically iterates over all provided observation simulators, generating the full set of simulated observations.
- Parameters:
observation_to_simulate (List[
ObservationSimulationSettings
]) – List of settings objects, each object providing the observation time settings for simulating one type of observable and link end set.observation_simulators (List[
ObservationSimulator
]) – List ofObservationSimulator
objects, each object hosting the functionality for simulating one type of observable and link end set.bodies (
SystemOfBodies
) – Object consolidating all bodies and environment models, including ground station models, that constitute the physical environment.
- Returns:
Object collecting all products of the observation simulation.
- Return type:
- compute_target_angles_and_range(bodies: tudatpy.kernel.numerical_simulation.environment.SystemOfBodies, station_id: tuple[str, str], target_body: str, observation_times: list[float], is_station_transmitting: bool) dict[float, numpy.ndarray[numpy.float64[m, 1]]] ¶
Function to compute the azimuth angle, elevation angle and range at a ground station.
Function to compute the azimuth angle, elevation angle and range at a ground station. This functions is provided as a function of convenience, to prevent users having to manually define the relevant settings for this often-needed functionality. This function takes an observing station and a target body as input, and provides the observed angles and current range (without correction for aberrations, with correction for light time) as observed at that station
- Parameters:
bodies (SystemOfBodies) – System of bodies that defines the full physical environment
station_id (tuple[ str, str]) – Identifier for the observing station, as a pair of strings: the body name and the station name.
target_body (str) – Name of body which is observed by ground station
observation_times (list[float]) – List of times at which the ground station observations are to be analyzed
is_station_transmitting (Bool) – Boolean defining whether the observation times define times at which the station is transmitting to, or receiving from, the ground station. This has an impact on the whether the light-time is computed forward or backward in time from the ground station to the target
- Returns:
Dictionary with the required output. Key defines the observation time, the value is an array of size three containing entry 0 - elevation angle, entry 1 - azimuth angle, entry 2 - range
- Return type:
dict[float,numpy.ndarray[numpy.float64[3, 1]]]
- propagate_covariance(initial_covariance: numpy.ndarray[numpy.float64[m, n]], state_transition_interface: tudatpy.kernel.numerical_simulation.estimation.CombinedStateTransitionAndSensitivityMatrixInterface, output_times: list[float]) dict[float, numpy.ndarray[numpy.float64[m, n]]] ¶
Function to propagate system covariance through time.
Function to propagate the covariance of a given system through time. The system dynamics and numerical settings of the propagation are prescribed by the state_transition_interface parameter.
- Parameters:
initial_covariance (numpy.ndarray[numpy.float64[m, n]]) – System covariance matrix (symmetric and positive semi-definite) at initial time. Dimensions have to be consistent with estimatable parameters in the system (specified by state_transition_interface)
state_transition_interface (
CombinedStateTransitionAndSensitivityMatrixInterface
) – Interface to the variational equations of the system dynamics, handling the propagation of the covariance matrix through time.output_times (List[ float ]) – Times at which the propagated covariance matrix shall be reported. Note that this argument has no impact on the integration time-steps of the covariance propagation, which always adheres to the integrator settings that the state_transition_interface links to. Output times which do not coincide with integration time steps are calculated via interpolation.
- Returns:
Dictionary reporting the propagated covariances at each output time.
- Return type:
Dict[ float, numpy.ndarray[numpy.float64[m, n]] ]
- propagate_formal_errors(initial_covariance: numpy.ndarray[numpy.float64[m, n]], state_transition_interface: tudatpy.kernel.numerical_simulation.estimation.CombinedStateTransitionAndSensitivityMatrixInterface, output_times: list[float]) dict[float, numpy.ndarray[numpy.float64[m, 1]]] ¶
Function to propagate system formal errors through time.
Function to propagate the formal errors of a given system through time. Note that in practice the entire covariance matrix is propagated, but only the formal errors (variances) are reported at the output times. The system dynamics and numerical settings of the propagation are prescribed by the state_transition_interface parameter.
- Parameters:
initial_covariance (numpy.ndarray[numpy.float64[m, n]]) – System covariance matrix (symmetric and positive semi-definite) at initial time. Dimensions have to be consistent with estimatable parameters in the system (specified by state_transition_interface)
state_transition_interface (
CombinedStateTransitionAndSensitivityMatrixInterface
) – Interface to the variational equations of the system dynamics, handling the propagation of the covariance matrix through time.output_times (List[ float ]) – Times at which the propagated covariance matrix shall be reported. Note that this argument has no impact on the integration time-steps of the covariance propagation, which always adheres to the integrator settings that the state_transition_interface links to. Output times which do not coincide with integration time steps are calculated via interpolation.
- Returns:
Dictionary reporting the propagated formal errors at each output time.
- Return type:
Dict[ float, numpy.ndarray[numpy.float64[m, 1]] ]
- estimation_convergence_checker(maximum_iterations: int = 5, minimum_residual_change: float = 0.0, minimum_residual: float = 0.0, number_of_iterations_without_improvement: int = 2) tudatpy.kernel.numerical_simulation.estimation.EstimationConvergenceChecker ¶
Function for creating an
EstimationConvergenceChecker
object.Function for creating an
EstimationConvergenceChecker
object, which is required for defining the convergence criteria of an estimation.- Parameters:
maximum_iterations (int, default = 5) – Maximum number of allowed iterations for estimation.
minimum_residual_change (float, default = 0.0) – Minimum required change in residual between two iterations.
minimum_residual (float, default = 0.0) – Minimum value of observation residual below which estimation is converged.
number_of_iterations_without_improvement (int, default = 2) – Number of iterations without reduction of residual.
- Returns:
Instance of the
EstimationConvergenceChecker
class, defining the convergence criteria for an estimation.- Return type:
Classes¶
Class containing a consolidated set of estimatable parameters. |
|
Template class for observation viability calculators. |
|
Class hosting the functionality for simulating observations. |
|
Class collecting all observations and associated data for use in an estimation. |
|
Class collecting a single set of observations and associated data, of a given observable type, link ends, and ancilliary data. |
|
Class establishing an interface with the simulation's State Transition and Sensitivity Matrices. |
|
Class defining the convergence criteria for an estimation. |
|
Class for defining all specific inputs to a covariance analysis. |
|
Class for defining all inputs to the estimation. |
|
Class collecting all outputs from the covariance analysis process. |
|
Class collecting all outputs from the iterative estimation process. |
- class EstimatableParameterSet¶
Class containing a consolidated set of estimatable parameters.
Class containing a consolidated set of estimatable parameters, linked to the environment and acceleration settings of the simulation. The user typically creates instances of this class via the
create_parameters_to_estimate()
factory function.- indices_for_parameter_type(self: tudatpy.kernel.numerical_simulation.estimation.EstimatableParameterSet, parameter_type: tuple[tudat::estimatable_parameters::EstimatebleParametersEnum, tuple[str, str]]) list[tuple[int, int]] ¶
Function to retrieve the indices of a given type of parameter.
Function to retrieve the index of all parameters of a given type from the parameter set. This function can be very useful, since the order of parameters within the parameter set does not necessarily correspond to the order in which the elements were added to the set.
- Parameters:
parameter_type (Tuple[
EstimatableParameterTypes
, Tuple[str, str] ]) – help- Returns:
help
- Return type:
- property constraints_size¶
read-only
Total size of linear constraint that is to be applied during estimation.
- Type:
- property initial_multi_arc_states_size¶
read-only
Amount of initial state parameters in the set, which are treated in a multi-arc fashion.
- Type:
- property initial_single_arc_states_size¶
read-only
Amount of initial state parameters in the set, which are treated in a single-arc fashion.
- Type:
- property initial_states_size¶
read-only
Amount of initial state parameters contained in the set.
- Type:
- property parameter_set_size¶
read-only
Size of the parameter set, i.e. amount of estimatable parameters contained in the set.
- Type:
- property parameter_vector¶
Vector containing the parameter values of all parameters in the set.
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- class ObservationViabilityCalculator¶
Template class for observation viability calculators.
Template class for classes which conducts viability calculations on simulated observations. Instances of the applicable ObservationViabilityCalculators are automatically created from the given
ObservationSimulationSettings
objects during the simulation of observations (simulate_observations()
). The user typically does not interact directly with this class.- is_observation_viable(self: tudatpy.kernel.numerical_simulation.estimation.ObservationViabilityCalculator, link_end_states: list[numpy.ndarray[numpy.float64[6, 1]]], link_end_times: list[float]) bool ¶
Function to check whether an observation is viable.
Function to check whether an observation is viable. The calculation is performed based on the given times and link end states. Note, that this function is called automatically during the simulation of observations. Direct calls to this function are generally not required.
- Parameters:
link_end_states (List[ numpy.ndarray[numpy.float64[6, 1]] ]) – Vector of states of the link ends involved in the observation.
link_end_times (List[float]) – Vector of times at the link ends involved in the observation.
- Returns:
True if observation is viable, false if not.
- Return type:
- class ObservationSimulator¶
Class hosting the functionality for simulating observations.
Class hosting the functionality for simulating a given observable over a defined link geometry. Instances of this class are automatically created from the given
ObservationSettings
objects upon instantiation of theEstimator
class.
- class ObservationCollection¶
Class collecting all observations and associated data for use in an estimation.
Class containing the full set of observations and associated data, typically for input into the estimation. When using simulated data, this class is instantiated via a call to the
simulate_observations()
function. More information is provided on the user guide- filter_observations(*args, **kwargs)¶
Overloaded function.
filter_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_filters: dict[tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser, tudatpy.kernel.numerical_simulation.estimation.ObservationFilterBase], save_filtered_observations: bool = True) -> None
No documentation found.
filter_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_filters: tudatpy.kernel.numerical_simulation.estimation.ObservationFilterBase, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9122cb0>, save_filtered_observations: bool = True) -> None
No documentation found.
- get_bodies_in_link_ends(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a913f870>) list[str] ¶
No documentation found.
- get_computed_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9123fb0>) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
No documentation found.
- get_concatenated_computed_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a917c070>) numpy.ndarray[numpy.float64[m, 1]] ¶
No documentation found.
- get_concatenated_observation_times(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a91559f0>) list[float] ¶
No documentation found.
- get_concatenated_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a911e370>) numpy.ndarray[numpy.float64[m, 1]] ¶
No documentation found.
- get_concatenated_observations_and_times(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a914ef30>) tuple[numpy.ndarray[numpy.float64[m, 1]], list[float]] ¶
No documentation found.
- get_concatenated_residuals(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a916a270>) numpy.ndarray[numpy.float64[m, 1]] ¶
No documentation found.
- get_concatenated_weights(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a914cf30>) numpy.ndarray[numpy.float64[m, 1]] ¶
No documentation found.
- get_full_dependent_variable_vector(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, dependent_variable: tudat::simulation_setup::ObservationDependentVariableSettings) tuple[numpy.ndarray[numpy.float64[m, 1]], numpy.ndarray[numpy.float64[m, 1]]] ¶
No documentation found.
- get_link_definitions_for_observables(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observable_type: tudat::observation_models::ObservableType) list[tudat::observation_models::LinkDefinition] ¶
No documentation found.
- get_observable_types(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a91232b0>) list[tudat::observation_models::ObservableType] ¶
No documentation found.
- get_observation_times(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9118af0>) list[list[float]] ¶
No documentation found.
- get_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9123db0>) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
No documentation found.
- get_observations_and_times(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9157030>) tuple[list[numpy.ndarray[numpy.float64[m, 1]]], list[list[float]]] ¶
No documentation found.
- get_reference_points_in_link_ends(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9169e30>) list[str] ¶
No documentation found.
- get_residuals(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a911beb0>) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
No documentation found.
- get_single_link_and_type_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observable_type: tudat::observation_models::ObservableType, link_definition: tudat::observation_models::LinkDefinition) list[tudat::observation_models::SingleObservationSet<double, double, 0>] ¶
Function to get all observation sets for a given observable type and link definition.
- Parameters:
observable_type (
ObservableType
) – Observable type of which observations are to be simulated.link_ends (LinkDefinition) – Link ends for which observations are to be simulated.
- Returns:
List of observation sets for given observable type and link definition.
- Return type:
- get_single_observation_sets(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a91563b0>) list[tudat::observation_models::SingleObservationSet<double, double, 0>] ¶
No documentation found.
- get_time_bounds_list(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9a43c30>) list[tuple[float, float]] ¶
No documentation found.
- get_weights(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a911f530>) list[numpy.ndarray[numpy.float64[m, 1]]] ¶
No documentation found.
- print_observation_sets_start_and_size(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection) None ¶
No documentation found.
- remove_empty_observation_sets(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection) None ¶
No documentation found.
- remove_single_observation_sets(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser) None ¶
No documentation found.
- set_constant_weight(*args, **kwargs)¶
Overloaded function.
set_constant_weight(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, weight: float, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a916b470>) -> None
No documentation found.
set_constant_weight(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, weight: numpy.ndarray[numpy.float64[m, 1]], observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a916a070>) -> None
No documentation found.
- set_constant_weight_per_observation_parser(*args, **kwargs)¶
Overloaded function.
set_constant_weight_per_observation_parser(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, weights_per_observation_parser: dict[tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser, float]) -> None
No documentation found.
set_constant_weight_per_observation_parser(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, weights_per_observation_parser: dict[tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser, numpy.ndarray[numpy.float64[m, 1]]]) -> None
No documentation found.
- set_observations(*args, **kwargs)¶
Overloaded function.
set_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observations: numpy.ndarray[numpy.float64[m, 1]]) -> None
No documentation found.
set_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observations: numpy.ndarray[numpy.float64[m, 1]], observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser) -> None
No documentation found.
set_observations(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observations_per_parser: dict[tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser, numpy.ndarray[numpy.float64[m, 1]]]) -> None
No documentation found.
- set_residuals(*args, **kwargs)¶
Overloaded function.
set_residuals(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, residuals: numpy.ndarray[numpy.float64[m, 1]]) -> None
No documentation found.
set_residuals(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, residuals: numpy.ndarray[numpy.float64[m, 1]], observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser) -> None
No documentation found.
set_residuals(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, residuals_per_parser: dict[tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser, numpy.ndarray[numpy.float64[m, 1]]]) -> None
No documentation found.
- set_tabulated_weights(*args, **kwargs)¶
Overloaded function.
set_tabulated_weights(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, tabulated_weights: numpy.ndarray[numpy.float64[m, 1]], observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9112170>) -> None
No documentation found.
set_tabulated_weights(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, tabulated_weights: dict[tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser, numpy.ndarray[numpy.float64[m, 1]]]) -> None
No documentation found.
- split_observation_sets(self: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, observation_set_splitter: tudatpy.kernel.numerical_simulation.estimation.ObservationSetSplitterBase, observation_parser: tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser = <tudatpy.kernel.numerical_simulation.estimation.ObservationCollectionParser object at 0x7fd0a9154630>) None ¶
No documentation found.
- property concatenated_float_times¶
read-only
Vector containing concatenated observation times. See user guide for details on storage order
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- property concatenated_link_definition_ids¶
read-only
Vector containing concatenated indices identifying the link ends. Each set of link ends is assigned a unique integer identifier (for a given instance of this class). The definition of a given integer identifier with the link ends is given by this class’
link_definition_ids()
function. See user guide for details on storage order of the present vector.- Type:
numpy.ndarray[ int ]
- property concatenated_observations¶
read-only
Vector containing concatenated observable values. See user guide for details on storage order
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- property concatenated_times¶
read-only
Vector containing concatenated observation times. See user guide for details on storage order
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- property concatenated_weights¶
No documentation found.
- property link_definition_ids¶
read-only
Dictionaty mapping a link end integer identifier to the specific link ends
- Type:
dict[ int, dict[ LinkEndType, LinkEndId ] ]
- property link_definitions_per_observable¶
No documentation found.
- property link_ends_per_observable_type¶
No documentation found.
- property observable_type_start_index_and_size¶
read-only
Dictionary defining per obervable type (dict key), the index in the full observation vector (
concatenated_observations()
) where the given observable type starts, and the number of subsequent entries in this vector containing a value of an observable of this type- Type:
dict[ ObservableType, [ int, int ] ]
- property observation_set_start_index_and_size¶
read-only
The nested dictionary/list returned by this property mirrors the structure of the
sorted_observation_sets()
property of this class. The present function provides the start index and size of the observables in the full observation vector that come from the correspoding SingleObservationSet in thesorted_observation_sets()
Consequently, the present property returns a nested dictionary defining per obervable type, link end identifier, and SingleObservationSet index (for the given observable type and link end identifier), where the observables in the given SingleObservationSet starts, and the number of subsequent entries in this vector containing data from it.
- property sorted_observation_sets¶
read-only
The nested dictionary/list contains the list of SingleObservationSet objects, in the same method as they are stored internally in the present class. Specifics on the storage order are given in the user guide
- Type:
dict[ ObservableType, dict[ int, list[ SingleObservationSet ] ] ]
- property sorted_per_set_time_bounds¶
No documentation found.
- property time_bounds¶
No documentation found.
- class SingleObservationSet¶
Class collecting a single set of observations and associated data, of a given observable type, link ends, and ancilliary data.
- filter_observations(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, filter: tudatpy.kernel.numerical_simulation.estimation.ObservationFilterBase, save_filtered_obs: bool = True) None ¶
No documentation found.
- set_constant_weight(*args, **kwargs)¶
Overloaded function.
set_constant_weight(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, weight: float) -> None
No documentation found.
set_constant_weight(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, weight: numpy.ndarray[numpy.float64[m, 1]]) -> None
No documentation found.
- set_observations(*args, **kwargs)¶
Overloaded function.
set_observations(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, observations: list[numpy.ndarray[numpy.float64[m, 1]]]) -> None
No documentation found.
set_observations(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, observations: numpy.ndarray[numpy.float64[m, 1]]) -> None
No documentation found.
- set_residuals(*args, **kwargs)¶
Overloaded function.
set_residuals(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, residuals: list[numpy.ndarray[numpy.float64[m, 1]]]) -> None
No documentation found.
set_residuals(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, residuals: numpy.ndarray[numpy.float64[m, 1]]) -> None
No documentation found.
- set_tabulated_weights(self: tudatpy.kernel.numerical_simulation.estimation.SingleObservationSet, weights: numpy.ndarray[numpy.float64[m, 1]]) None ¶
No documentation found.
- property ancilliary_settings¶
read-only
Ancilliary settings all stored observations
- property computed_observations¶
No documentation found.
- property concatenad_weights¶
No documentation found.
- property concatenated_computed_observations¶
No documentation found.
- property concatenated_observations¶
read-only
Concatenated vector of all stored observations
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- property concatenated_residuals¶
No documentation found.
- property dependent_variables¶
No documentation found.
- property dependent_variables_history¶
No documentation found.
- property filtered_observation_set¶
No documentation found.
- property link_definition¶
read-only
Definition of the link ends for which the object stores observations
- Type:
- property list_of_observations¶
read-only
List of separate stored observations. Each entry of this list is a vector containing a single observation. In cases where the observation is single-valued (range, Doppler), the vector is size 1, but for multi-valued observations such as angular position, each vector in the list will have size >1
- Type:
list[ numpy.ndarray[numpy.float64[m, 1]] ]
- property number_filtered_observations¶
No documentation found.
- property number_of_observables¶
No documentation found.
- property observable_type¶
read-only
Type of observable for which the object stores observations
- Type:
- property observation_times¶
read-only
Reference time for each of the observations in
list_of_observations
- property observations_history¶
read-only
Dictionary of observations sorted by time. Created by making a dictionaty with
observation_times
as keys andlist_of_observations
as values- Type:
dict[ float, numpy.ndarray[numpy.float64[m, 1]] ]
- property reference_link_end¶
read-only
Reference link end for all stored observations
- Type:
- property residuals¶
No documentation found.
- property single_observable_size¶
No documentation found.
- property time_bounds¶
No documentation found.
- property total_observation_set_size¶
No documentation found.
- property weights¶
No documentation found.
- property weights_vector¶
No documentation found.
- class CombinedStateTransitionAndSensitivityMatrixInterface¶
Class establishing an interface with the simulation’s State Transition and Sensitivity Matrices.
Class establishing an interface to the State Transition and Sensitivity Matrices. Instances of this class are instantiated automatically upon creation of
Estimator
objects, using the simulation information in the observation, propagation and integration settings that theEstimator
instance is linked to.- full_state_transition_sensitivity_at_epoch(self: tudatpy.kernel.numerical_simulation.estimation.CombinedStateTransitionAndSensitivityMatrixInterface, time: float, add_central_body_dependency: bool = True, arc_defining_bodies: list[str] = []) numpy.ndarray[numpy.float64[m, n]] ¶
- Parameters:
time (float) – Time at which full concatenated state transition and sensitivity matrix are to be retrieved.
- Returns:
Full concatenated state transition and sensitivity matrix at a given time.
- Return type:
numpy.ndarray[numpy.float64[m, n]]
- state_transition_sensitivity_at_epoch(self: tudatpy.kernel.numerical_simulation.estimation.CombinedStateTransitionAndSensitivityMatrixInterface, time: float, add_central_body_dependency: bool = True, arc_defining_bodies: list[str] = []) numpy.ndarray[numpy.float64[m, n]] ¶
Function to get the concatenated state transition and sensitivity matrix at a given time.
Function to get the concatenated state transition and sensitivity matrix at a given time. Entries corresponding to parameters which are not active at the current arc are omitted.
- Parameters:
time (float) – Time at which concatenated state transition and sensitivity matrix are to be retrieved.
- Returns:
Concatenated state transition and sensitivity matrix at a given time.
- Return type:
numpy.ndarray[numpy.float64[m, n]]
- property full_parameter_size¶
read-only
Full amount of parameters w.r.t. which partials have been set up via State Transition and Sensitivity Matrices.
- Type:
- class EstimationConvergenceChecker¶
Class defining the convergence criteria for an estimation.
Class defining the convergence criteria for an estimation. The user typically creates instances of this class via the
estimation_convergence_checker()
factory function.
- class CovarianceAnalysisInput¶
Class for defining all specific inputs to a covariance analysis.
- __init__(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, observations_and_times: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, inverse_apriori_covariance: numpy.ndarray[numpy.float64[m, n]] = array([], shape=(0, 0), dtype=float64), consider_covariance: numpy.ndarray[numpy.float64[m, n]] = array([], shape=(0, 0), dtype=float64)) None ¶
Class constructor.
Constructor through which the user can create instances of this class. Note that the weight are all initiated as 1.0, and the default settings of
define_covariance_settings
are used.- Parameters:
observations_and_times (ObservationCollection) – Total data structure of observations and associated times/link ends/type/etc.
inverse_apriori_covariance (numpy.ndarray[numpy.float64[m, n]], default = [ ]) – A priori covariance matrix (unnormalized) of estimated parameters. This should be either a size 0x0 matrix (no a priori information), or a square matrix with the same size as the number of parameters that are considered
- Returns:
Instance of the
CovarianceAnalysisInput
class, defining the data and other settings to be used for the covariance analysis.- Return type:
- define_covariance_settings(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, reintegrate_equations_on_first_iteration: bool = True, reintegrate_variational_equations: bool = True, save_design_matrix: bool = True, print_output_to_terminal: bool = True, limit_condition_number_for_warning: float = 100000000.0) None ¶
Function to define specific settings for covariance analysis process
Function to define specific settings for covariance analysis process
- Parameters:
reintegrate_equations (bool, default = True) – Boolean denoting whether the dynamics and variational equations are to be reintegrated or if existing values are to be used to perform first iteration.
reintegrate_variational_equations (bool, default = True) – Boolean denoting whether the variational equations are to be reintegrated during estimation (if this is set to False, and
reintegrate_equations
to true, only the dynamics are re-integrated)save_design_matrix (bool, default = True) – Boolean denoting whether to save the partials matrix (also called design matrix) \(\mathbf{H}\) in the output. Setting this to false makes the \(\mathbf{H}\) matrix unavailable to the user, with the advantage of lower RAM usage.
print_output_to_terminal (bool, default = True) – Boolean denoting whether to print covariance-analysis-specific output to the terminal when running the estimation.
- Returns:
Function modifies the object in-place.
- Return type:
None
- set_constant_single_observable_and_link_end_vector_weight(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, observable_type: tudat::observation_models::ObservableType, link_ends: dict[tudat::observation_models::LinkEndType, tudat::observation_models::LinkEndId], weight: numpy.ndarray[numpy.float64[m, 1]]) None ¶
No documentation found.
- set_constant_single_observable_and_link_end_weight(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, observable_type: tudat::observation_models::ObservableType, link_ends: dict[tudat::observation_models::LinkEndType, tudat::observation_models::LinkEndId], weight: float) None ¶
No documentation found.
- set_constant_single_observable_vector_weight(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, observable_type: tudat::observation_models::ObservableType, weight: numpy.ndarray[numpy.float64[m, 1]]) None ¶
No documentation found.
- set_constant_single_observable_weight(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, observable_type: tudat::observation_models::ObservableType, weight: float) None ¶
No documentation found.
- set_constant_vector_weight_per_observable(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, weight_per_observable: dict[tudat::observation_models::ObservableType, numpy.ndarray[numpy.float64[m, 1]]]) None ¶
No documentation found.
- set_constant_weight(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, weight: float) None ¶
Function to set a constant weight matrix for all observables.
Function to set a constant weight matrix for all observables. The weights are applied to all observations managed by the given PodInput object.
- Parameters:
constant_weight (float) – Constant weight factor that is to be applied to all observations.
- Returns:
Function modifies the object in-place.
- Return type:
None
- set_constant_weight_per_observable(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, weight_per_observable: dict[tudat::observation_models::ObservableType, float]) None ¶
Function to set a constant weight matrix for a given type of observable.
Function to set a constant weight matrix for a given type of observable. The weights are applied to all observations of the observable type specified by the weight_per_observable parameter.
- Parameters:
constant_weight (Dict[
ObservableType
, float ]) – Constant weight factor that is to be applied to all observations.- Returns:
Function modifies the object in-place.
- Return type:
None
- set_total_single_observable_and_link_end_vector_weight(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput, observable_type: tudat::observation_models::ObservableType, link_ends: dict[tudat::observation_models::LinkEndType, tudat::observation_models::LinkEndId], weight_vector: numpy.ndarray[numpy.float64[m, 1]]) None ¶
No documentation found.
- set_weights_from_observation_collection(self: tudatpy.kernel.numerical_simulation.estimation.CovarianceAnalysisInput) None ¶
No documentation found.
- property weight_matrix_diagonal¶
read-only
Complete diagonal of the weights matrix that is to be used
- Type:
numpy.ndarray[numpy.float64[n, 1]]
- class EstimationInput¶
Class for defining all inputs to the estimation.
- __init__(self: tudatpy.kernel.numerical_simulation.estimation.EstimationInput, observations_and_times: tudatpy.kernel.numerical_simulation.estimation.ObservationCollection, inverse_apriori_covariance: numpy.ndarray[numpy.float64[m, n]] = array([], shape=(0, 0), dtype=float64), convergence_checker: tudatpy.kernel.numerical_simulation.estimation.EstimationConvergenceChecker = <tudatpy.kernel.numerical_simulation.estimation.EstimationConvergenceChecker object at 0x7fd0a911eb70>, consider_covariance: numpy.ndarray[numpy.float64[m, n]] = array([], shape=(0, 0), dtype=float64), consider_parameters_deviations: numpy.ndarray[numpy.float64[m, 1]] = array([], dtype=float64), apply_final_parameter_correction: bool = True) None ¶
Class constructor.
Constructor through which the user can create instances of this class.
- Parameters:
observations_and_times (ObservationCollection) – Total data structure of observations and associated times/link ends/type/etc.
inverse_apriori_covariance (numpy.ndarray[numpy.float64[m, n]], default = [ ]) – A priori covariance matrix (unnormalized) of estimated parameters. This should be either a size 0x0 matrix (no a priori information), or a square matrix with the same size as the number of parameters that are considered
convergence_checker (
EstimationConvergenceChecker
, default =estimation_convergence_checker()
) – Object defining when the estimation is converged.
- Returns:
Instance of the
EstimationInput
class, defining the data and other settings to be used for the estimation.- Return type:
- define_estimation_settings(self: tudatpy.kernel.numerical_simulation.estimation.EstimationInput, reintegrate_equations_on_first_iteration: bool = True, reintegrate_variational_equations: bool = True, save_design_matrix: bool = True, print_output_to_terminal: bool = True, save_residuals_and_parameters_per_iteration: bool = True, save_state_history_per_iteration: bool = False, limit_condition_number_for_warning: float = 100000000.0, condition_number_warning_each_iteration: bool = True) None ¶
Function to define specific settings for the estimation process
Function to define specific settings for covariance analysis process
- Parameters:
reintegrate_equations_on_first_iteration (bool, default = True) – Boolean denoting whether the dynamics and variational equations are to be reintegrated or if existing values are to be used to perform first iteration.
reintegrate_variational_equations (bool, default = True) – Boolean denoting whether the variational equations are to be reintegrated during estimation (if this is set to False, and
reintegrate_equations_on_first_iteration
to true, only the dynamics are re-integrated)save_design_matrix (bool, default = True) – Boolean denoting whether to save the partials matrix (also called design matrix) \(\mathbf{H}\) in the output. Setting this to false makes the \(\mathbf{H}\) matrix unavailable to the user, with the advantage of lower RAM usage.
print_output_to_terminal (bool, default = True) – Boolean denoting whether to print covariance-analysis-specific output to the terminal when running the estimation.
save_residuals_and_parameters_per_iteration (bool, default = True) – Boolean denoting whether the residuals and parameters from the each iteration are to be saved.
save_state_history_per_iteration (bool, default = False) – Boolean denoting whether the state history and dependent variables are to be saved on each iteration.
- Returns:
Function modifies the object in-place.
- Return type:
None
- class CovarianceAnalysisOutput¶
Class collecting all outputs from the covariance analysis process.
- property consider_covariance_contribution¶
No documentation found.
- property consider_normalization_factors¶
No documentation found.
- property correlations¶
read-only
Correlation matrix of the estimation result. Entry \(i,j\) is equal to \(P_{i,j}/(\sigma_{i}\sigma_{j})\)
- Type:
numpy.ndarray[numpy.float64[m, m]]
- property covariance¶
read-only
(Unnormalized) estimation covariance matrix \(\mathbf{P}\).
- Type:
numpy.ndarray[numpy.float64[m, m]]
- property design_matrix¶
read-only
Matrix of unnormalized partial derivatives \(\mathbf{H}=\frac{\partial\mathbf{h}}{\partial\mathbf{p}}\).
- Type:
numpy.ndarray[numpy.float64[m, n]]
- property formal_errors¶
read-only
Formal error vector \(\boldsymbol{\sigma}\) of the estimation result (e.g. square root of diagonal entries of covariance)s
- Type:
numpy.ndarray[numpy.float64[m, 1]]s
- property inverse_covariance¶
read-only
(Unnormalized) inverse estimation covariance matrix \(\mathbf{P}^{-1}\).
- Type:
numpy.ndarray[numpy.float64[m, m]]
- property inverse_normalized_covariance¶
read-only
Normalized inverse estimation covariance matrix \(\mathbf{\tilde{P}}^{-1}\).
- Type:
numpy.ndarray[numpy.float64[m, m]]
- property normalization_terms¶
read-only
Vector of normalization terms used for covariance and design matrix
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- property normalized_covariance¶
read-only
Normalized estimation covariance matrix \(\mathbf{\tilde{P}}\).
- Type:
numpy.ndarray[numpy.float64[m, m]]
- property normalized_covariance_with_consider_parameters¶
No documentation found.
- property normalized_design_matrix¶
read-only
Matrix of normalized partial derivatives \(\tilde{\mathbf{H}}\).
- Type:
numpy.ndarray[numpy.float64[m, n]]
- property normalized_design_matrix_consider_parameters¶
No documentation found.
- property unnormalized_covariance_with_consider_parameters¶
No documentation found.
- property weighted_design_matrix¶
read-only
Matrix of weighted partial derivatives, equal to \(\mathbf{W}^{1/2}{\mathbf{H}}\)
- Type:
numpy.ndarray[numpy.float64[m, n]]
- property weighted_normalized_design_matrix¶
read-only
Matrix of weighted, normalized partial derivatives, equal to \(\mathbf{W}^{1/2}\tilde{\mathbf{H}}\)
- Type:
numpy.ndarray[numpy.float64[m, n]]
- class EstimationOutput¶
Class collecting all outputs from the iterative estimation process.
- property best_iteration¶
No documentation found.
- property final_parameters¶
No documentation found.
- property final_residuals¶
read-only
Vector of post-fit observation residuals, for the iteration with the lowest rms residuals.
- Type:
numpy.ndarray[numpy.float64[m, 1]]
- property parameter_history¶
read-only
Parameter vectors, concatenated per iteration into a matrix. Column 0 contains pre-estimation values. The \((i+1)^{th}\) column has the residuals from the \(i^{th}\) iteration.
- Type:
numpy.ndarray[numpy.float64[m, n]]
- property residual_history¶
read-only
Residual vectors, concatenated per iteration into a matrix; the \(i^{th}\) column has the residuals from the \(i^{th}\) iteration.
- Type:
numpy.ndarray[numpy.float64[m, n]]
- property simulation_results_per_iteration¶
read-only
List of complete numerical propagation results, with the \(i^{th}\) entry of thee list thee results of the \(i^{th}\) propagation
- Type: