dependent_variable
#
This module provides the functionality for creating dependent variable settings. Note that all output is in SI units (meters, radians, seconds). All epochs are provided in seconds since J2000.
References#
Functions#

Function to add the Mach number to the dependent variables to save. 

Function to add the altitude to the dependent variables to save. 

Function to add the airspeed to the dependent variables to save. 

Function to add the airspeed velocity vector to the dependent variables to save. 

Function to add the groundspeed velocity vector to the dependent variables to save. 

Function to add the local freestream density to the dependent variables to save. 

Function to add the local freestream temperature to the dependent variables to save. 

Function to add the local freestream dynamic pressure to the dependent variables to save. 

Function to add the total aerodynamic Gload to the dependent variables to save. 

Function to add the relative position vector to the dependent variables to save. 

Function to add the relative distance to the dependent variables to save. 

Function to add the relative velocity vector to the dependent variables to save. 

Function to add the relative speed to the dependent variables to save. 

Function to add the Keplerian state to the dependent variables to save. 

Function to add the modified equinoctial state to the dependent variables to save. 

Function to add a single acceleration to the dependent variables to save. 

Function to add a single scalar acceleration to the dependent variables to save. 

Function to add the total scalar acceleration (norm of the vector) acting on a body to the dependent variables to save. 

Function to add the total acceleration vector acting on a body to the dependent variables to save. 

Function to add a single torque (norm of the torque vector) to the dependent variables to save. 

Function to add a single torque vector to the dependent variables to save. 

Function to add the total torque (norm of the torque vector) to the dependent variables to save. 

Function to add the total torque vector to the dependent variables to save. 
Function to add single degree/order contributions of a spherical harmonic acceleration vector to the dependent variables to save. 

Function to add a single term of the spherical harmonic acceleration (norm of the vector) to the dependent variables to save. 


Function to add the aerodynamic force coefficients to the dependent variables to save. 

Function to add the aerodynamic moment coefficients to the dependent variables to save. 

Function to add the latitude to the dependent variables to save. 

Function to add the geodetic latitude to the dependent variables to save. 

Function to add the longitude to the dependent variables to save. 

Function to add the heading angle to the dependent variables to save. 

Function to add the flight path angle to the dependent variables to save. 

Function to add the angle of attack to the dependent variables to save. 

Function to add the sideslip angle to the dependent variables to save, as defined by Mooij, 1994 1 . 

Function to add the bank angle to the dependent variables to save, as defined by Mooij, 1994 1 . 

Function to add the radiation pressure to the dependent variables to save. 
Function to add the acceleration induced by the total timevariability of a gravity field to the dependent variables to save. 

Function to add the acceleration induced by a single timevariability of a gravity field to the dependent variables to save. 

Function to add the acceleration induced by a single timevariability of a gravity field, at a given list of degrees/orders, to the dependent variables to save. 

Function to add the rotation matrix from inertial to bodyfixed frame to the dependent variables to save. 


Function to add the rotation matrix from the TNW to the inertial frame to the dependent variables to save. 

Function to add the rotation matrix from the RSW to the inertial frame to the dependent variables to save. 
Function to add the 313 Euler angles for the rotation from inertial to bodyfixed frame to the dependent variables to save. 

Function to add the rotation matrix between any two reference frames used in aerodynamic calculations. 


Function to add the altitude of periapsis to the dependent variables to save. 

Function to add the altitude of apoapsis to the dependent variables to save. 

Function to add the spherical, bodyfixed position to the dependent variables to save. 

Function to add the relative Cartesian position, in the central body's fixed frame, to the dependent variables to save. 

Function to add the current body mass to the dependent variables to save. 

Function to add the current radiation pressure coefficient to the dependent variables to save. 

Function to add the total mass rate to the dependent variables to save. 
Function to add the gravitational potential to the dependent variables to save. 

Function to add the laplacian of the gravitational potential to the dependent variables to save. 


Function to compute the minimum distance between a given body, and a set of other bodies. 
Function to compute the minimum distance between a ground station, and a set of other bodies visible from that station. 


Function to compute a custom dependent variable. 
 mach_number(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the Mach number to the dependent variables to save.
Function to add the Mach number to the dependent variables to save. The calculation of the altitude uses the atmosphere model of the central body and the current state of the body for which the Mach number is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
Examples
To create settings for saving of a Mach number of a body name ‘Spacecraft’ w.r.t. the atmosphere of body ‘Earth’, use:
# Define save settings for Mach number propagation_setup.dependent_variable.mach_number( "Spacecraft", "Earth" )
 altitude(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the altitude to the dependent variables to save.
Function to add the altitude to the dependent variables to save. The calculation of the altitude uses the shape model of the central body and the current state of the body for which the altitude is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 airspeed(body: str, body_with_atmosphere: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the airspeed to the dependent variables to save.
Function to add the airspeed to the dependent variables to save. The calculation of the airspeed uses the rotation and wind models of the central body (to determine the motion of the atmosphere in inertial space), and the current state of the body for which the airspeed is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 body_fixed_airspeed_velocity(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the airspeed velocity vector to the dependent variables to save.
Function to add the airspeed velocity vector to the dependent variables to save. The airspeed velocity vector is not provided in an inertial frame, but instead a frame centered on, and fixed to, the central body. It defines the velocity vector of a body w.r.t. the relative atmosphere It requires the central body to have an atmosphere.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 body_fixed_groundspeed_velocity(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the groundspeed velocity vector to the dependent variables to save.
Function to add the groundspeed velocity vector to the dependent variables to save. The groundspeed velocity vector is not provided in an inertial frame, but instead a frame centered on, and fixed to, the central body. It defines the velocity vector of a body w.r.t. ‘the ground’ or (alternatively and identically) the relative atmosphere in the case the atmosphere would be perfectly corotating with the central body.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 density(body: str, body_with_atmosphere: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the local freestream density to the dependent variables to save.
Function to add the freestream density (at a body’s position) to the dependent variables to save. The calculation of the density uses the atmosphere model of the central body, and the current state of the body for which the density is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 temperature(body: str, body_with_atmosphere: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the local freestream temperature to the dependent variables to save.
Function to add the freestream temperature (at a body’s position) to the dependent variables to save. The calculation of the temperature uses the atmosphere model of the central body, and the current state of the body for which the temperature is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 dynamic_pressure(body: str, body_with_atmosphere: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the local freestream dynamic pressure to the dependent variables to save.
Function to add the freestream dynamic pressure (at a body’s position) to the dependent variables to save. The calculation of the temperature uses the atmosphere model of the central body, and the current state of the body for which the temperature is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 local_aerodynamic_g_load(body: str, body_with_atmosphere: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the total aerodynamic Gload to the dependent variables to save.
Function to add the total aerodynamic Gload of a body to the dependent variables to save. The calculation uses the atmosphere model of the central body, and the current state of the body for which the temperature is to be calculated.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 relative_position(body: str, relative_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the relative position vector to the dependent variables to save.
Function to add a body’s relative position vector with respect to a second body to the dependent variables to save. The relative position is computed between the bodies’ centers of mass.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 relative_distance(body: str, relative_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the relative distance to the dependent variables to save.
Function to add a body’s relative distance (norm of the position vector) with respect to a second body to the dependent variables to save. The relative distance is computed between the bodies’ centers of mass.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 relative_velocity(body: str, relative_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the relative velocity vector to the dependent variables to save.
Function to add a body’s relative velocity vector with respect to a second body to the dependent variables to save. The relative velocity is computed between the bodies’ centers of mass.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 relative_speed(body: str, relative_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the relative speed to the dependent variables to save.
Function to add a body’s relative speed (norm of the relative velocity vector) with respect to a second body to the dependent variables to save. The relative speed is computed between the bodies’ centers of mass.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 keplerian_state(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the Keplerian state to the dependent variables to save.
Function to add the Keplerian state to the dependent variables to save. The Keplerian state is returned in this order: 1: Semimajor Axis. 2: Eccentricity. 3: Inclination. 4: Argument of Periapsis. 5. Right Ascension of the Ascending Node. 6: True Anomaly.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 modified_equinoctial_state(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the modified equinoctial state to the dependent variables to save.
Function to add the modified equinoctial state to the dependent variables to save. The value of the parameter I is automatically chosen as +1 or 1, depending on whether the inclination is smaller or larger than 90 degrees. The elements are returned in the order \(p\), \(f\), \(g\), \(h\), \(k\), \(L\)
 Parameters
 Returns
Dependent variable settings object.
 Return type
 single_acceleration(acceleration_type: tudatpy.kernel.numerical_simulation.propagation_setup.acceleration.AvailableAcceleration, body_undergoing_acceleration: str, body_exerting_acceleration: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add a single acceleration to the dependent variables to save.
Function to add a single acceleration vector to the dependent variables to save. The requested acceleration is defined by its type, and the bodies undergoing and exerting the acceleration. This acceleration vector represents the acceleration in 3D in the inertial reference frame. NOTE: When requesting a thirdbody perturbation be saved, you may use either the direct acceleration type, or the third body type. For instance, for saving a pointmass thirdbody perturbation, you may specify either
point_mass_gravity_type
orthird_body_point_mass_gravity_type
as acceleration type. Parameters
acceleration_type (AvailableAcceleration) – Acceleration type to be saved.
body_undergoing_acceleration (str) – Body undergoing acceleration.
body_exerting_acceleration (str) – Body exerting acceleration.
 Returns
Dependent variable settings object.
 Return type
Examples
To create settings for saving a point mass acceleration acting on body called ‘Spacecraft’, exerted by a body named ‘Earth’, use:
# Define save settings for pointmass acceleration on Spacecraft by Earth propagation_setup.dependent_variable.single_acceleration( propagation_setup.acceleration.point_mass_gravity_type, 'Spacecraft', 'Earth' )
 single_acceleration_norm(acceleration_type: tudatpy.kernel.numerical_simulation.propagation_setup.acceleration.AvailableAcceleration, body_undergoing_acceleration: str, body_exerting_acceleration: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add a single scalar acceleration to the dependent variables to save.
Function to add a single scalar acceleration (norm of the acceleration vector) to the dependent variables to save. The requested acceleration is defined by its type, and the bodies undergoing and exerting the acceleration. NOTE: When requesting a thirdbody perturbation be saved, you may use either the direct acceleration type, or the third body type. For instance, for saving a pointmass thirdbody perturbation, you may specify either
point_mass_gravity_type
orthird_body_point_mass_gravity_type
as acceleration type. Parameters
acceleration_type (AvailableAcceleration) – Acceleration type to be saved
body_undergoing_acceleration (str) – Body undergoing acceleration.
body_exerting_acceleration (str) – Body exerting acceleration.
 Returns
Dependent variable settings object.
 Return type
Examples
To create settings for saving norm of a point mass acceleration acting on body called ‘Spacecraft’, exerted by a body named ‘Earth’, use:
# Define save settings for pointmass acceleration on Spacecraft by Earth propagation_setup.dependent_variable.single_acceleration_norm( propagation_setup.acceleration.point_mass_gravity_type, 'Spacecraft', 'Earth' )
 total_acceleration_norm(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the total scalar acceleration (norm of the vector) acting on a body to the dependent variables to save.
 Parameters
body (str) – Body undergoing acceleration.
 Returns
Dependent variable settings object.
 Return type
 total_acceleration(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the total acceleration vector acting on a body to the dependent variables to save.
 Parameters
body (str) – Body undergoing acceleration.
 Returns
Dependent variable settings object.
 Return type
 single_torque_norm(torque_type: tudatpy.kernel.numerical_simulation.propagation_setup.torque.AvailableTorque, body_undergoing_torque: str, body_exerting_torque: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add a single torque (norm of the torque vector) to the dependent variables to save.
 Parameters
torque_type (AvailableTorque) – Torque type to be saved.
body_undergoing_torque (str) – Body undergoing torque.
body_exerting_torque (str) – Body exerting torque.
 Returns
Dependent variable settings object.
 Return type
 single_torque(torque_type: tudatpy.kernel.numerical_simulation.propagation_setup.torque.AvailableTorque, body_undergoing_torque: str, body_exerting_torque: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add a single torque vector to the dependent variables to save.
 Parameters
torque_type (AvailableTorque) – Torque type to be saved.
body_undergoing_torque (str) – Body undergoing torque.
body_exerting_torque (str) – Body exerting torque.
 Returns
Dependent variable settings object.
 Return type
 total_torque_norm(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the total torque (norm of the torque vector) to the dependent variables to save.
 Parameters
body (str) – Body whose dependent variable should be saved.
 Returns
Dependent variable settings object.
 Return type
 total_torque(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the total torque vector to the dependent variables to save.
 Parameters
body (str) – Body whose dependent variable should be saved.
 Returns
Dependent variable settings object.
 Return type
 spherical_harmonic_terms_acceleration(body_undergoing_acceleration: str, body_exerting_acceleration: str, component_indices: List[Tuple[int, int]]) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add single degree/order contributions of a spherical harmonic acceleration vector to the dependent variables to save.
Function to add single degree/order contributions of a spherical harmonic acceleration vector to the dependent variables to save. The spherical harmonic acceleration consists of a (truncated) summation of contributions at degree \(l\) and order \(m\). Using this function, you can save the contributions of separate \(l,m\) entries to the total acceleration. For instance, when requesting dependent variables for \(l,m=2,2\), the contribution due to the combined influence of \(ar{C}_{22}\) and ar{S}_{22} are provided
 Parameters
 Returns
Dependent variable settings object.
 Return type
Examples
To create settings for saving spherical harmonic acceleration contributions of degree/order 2/0, 2/1 and 2/2, acting on a body names ‘Spacecraft’, exerted by a body named ‘Earth’, use the following for the acceleration. The resulting dependent variable will contain nine entries (three acceleration components for 2/0, 2/1 and 2/2, respectively).
# Define degree/order combinations for which to save acceleration contributions spherical_harmonic_terms = [ (2,0), (2,1), (2,2) ] # Define save settings for separate spherical harmonic contributions propagation_setup.dependent_variable.spherical_harmonic_terms_acceleration( "Spacecraft", "Earth", spherical_harmonic_terms )
 spherical_harmonic_terms_acceleration_norm(body_undergoing_acceleration: str, body_exerting_acceleration: str, component_indices: List[Tuple[int, int]]) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add a single term of the spherical harmonic acceleration (norm of the vector) to the dependent variables to save.
Function to add single term of the spherical harmonic acceleration (norm of the vector) to the dependent variables to save.
 Parameters
 Returns
Dependent variable settings object.
 Return type
Examples
To create settings for saving spherical harmonic acceleration contributions of degree/order 2/0, 2/1 and 2/2, acting on a body names ‘Spacecraft’, exerted by a body named ‘Earth’, use the following for the acceleration. The resulting dependent variable will contain three entries (one acceleration norm for 2/0, 2/1 and 2/2, respectively).
# Define degree/order combinations for which to save acceleration contributions spherical_harmonic_terms = [ (2,0), (2,1), (2,2) ] # Define save settings for separate spherical harmonic contributions propagation_setup.dependent_variable.spherical_harmonic_terms_acceleration_norm( "Spacecraft", "Earth", spherical_harmonic_terms )
 aerodynamic_force_coefficients(body: str, central_body: str = '') tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the aerodynamic force coefficients to the dependent variables to save.
Function to add the aerodynamic force coefficients to the dependent variables to save. It requires an aerodynamic coefficient interface to be defined for the vehicle. The coefficients are returned in the following order: C_D, C_S, C_l (if coefficient interface defined in aerodynamic frame), or C_X, C_Y, C_Z (if coefficient interface defined in body frame).
 Parameters
 Returns
Dependent variable settings object.
 Return type
 aerodynamic_moment_coefficients(body: str, central_body: str = '') tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the aerodynamic moment coefficients to the dependent variables to save.
Function to add the aerodynamic force coefficients to the dependent variables to save. It requires an aerodynamic coefficient interface to be defined for the vehicle. The coefficients are returned in the following order: C_l, C_m, C_n , respectively about the X, Y, Z axes of the bodyfixed frame, see (see Mooij, 1994 1)
 Parameters
 Returns
Dependent variable settings object.
 Return type
 latitude(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the latitude to the dependent variables to save.
Function to add the latitude of a body, in the bodyfixed frame of a central body, to the dependent variables to save.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 geodetic_latitude(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the geodetic latitude to the dependent variables to save.
Function to add the geodetic latitude, in the bodyfixed frame of a central body, to the dependent variables to save. If the central body has a spherical shape model, this value is identical to the latitude. If the central body has an oblate spheroid shape model, the calculation of the geodetic latitude uses the flattening of the this shape model to determine the geodetic latitude
 Parameters
 Returns
Dependent variable settings object.
 Return type
 longitude(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the longitude to the dependent variables to save.
Function to add the longitude of a body, in the bodyfixed frame of a central body, to the dependent variables to save.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 heading_angle(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the heading angle to the dependent variables to save.
Function to add the heading angle to the dependent variables to save, as defined by Mooij, 1994 1 .
 Parameters
 Returns
Dependent variable settings object.
 Return type
 flight_path_angle(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the flight path angle to the dependent variables to save.
Function to add the flight path angle to the dependent variables to save, as defined by Mooij, 1994 1 .
 Parameters
 Returns
Dependent variable settings object.
 Return type
 angle_of_attack(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the angle of attack to the dependent variables to save.
Function to add the angle of attack angle to the dependent variables to save, as defined by Mooij, 1994 1 .
 Parameters
 Returns
Dependent variable settings object.
 Return type
 sideslip_angle(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the sideslip angle to the dependent variables to save, as defined by Mooij, 1994 1 .
 Parameters
 Returns
Dependent variable settings object.
 Return type
 bank_angle(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the bank angle to the dependent variables to save, as defined by Mooij, 1994 1 .
 Parameters
 Returns
Dependent variable settings object.
 Return type
 radiation_pressure(body: str, radiating_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the radiation pressure to the dependent variables to save.
Function to add the local radiation pressure, in N/m^2, to the dependent variables to save. It requires a ‘source power’ to be defined for the radiating body.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 total_gravity_field_variation_acceleration(body_undergoing_acceleration: str, body_exerting_acceleration: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the acceleration induced by the total timevariability of a gravity field to the dependent variables to save.
Function to add the acceleration induced by the total timevariability of a gravity field to the dependent variables to save. This function does not distinguish between different sources of variations of the gravity field, and takes the full timevariation when computing the contribution to the acceleration. To select only one contribution, use the
single_gravity_field_variation_acceleration()
function. Parameters
 Returns
Dependent variable settings object.
 Return type
 single_gravity_field_variation_acceleration(body_undergoing_acceleration: str, body_exerting_acceleration: str, deformation_type: tudatpy.kernel.numerical_simulation.environment_setup.gravity_field_variation.BodyDeformationTypes, identifier: str = '') tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the acceleration induced by a single timevariability of a gravity field to the dependent variables to save.
Function to add the acceleration induced by a single timevariability of a gravity field to the dependent variables to save. The user specifies the type of variability for which the induced acceleration is to be saved.
 Parameters
body_undergoing_acceleration (str) – Body whose dependent variable should be saved.
body_exerting_acceleration (str) – Body exerting the acceleration.
deformation_type (BodyDeformationTypes) – Type of gravity field variation for which the acceleration contribution is to be saved
identifier (str, default="") – Identifier for the deformation type. To be used in case multiple realizations of a single variation type are present in the given body. Otherwise, this entry can be left empty
 Returns
Dependent variable settings object.
 Return type
 single_per_term_gravity_field_variation_acceleration(body_undergoing_acceleration: str, body_exerting_acceleration: str, component_indices: List[Tuple[int, int]], deformation_type: tudatpy.kernel.numerical_simulation.environment_setup.gravity_field_variation.BodyDeformationTypes, identifier: str = '') tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the acceleration induced by a single timevariability of a gravity field, at a given list of degrees/orders, to the dependent variables to save. This combines the functionality of the
single_gravity_field_variation_acceleration()
andspherical_harmonic_terms_acceleration()
variables Parameters
body_undergoing_acceleration (str) – Body whose dependent variable should be saved.
body_exerting_acceleration (str) – Body exerting the acceleration.
component_indices (list[tuple]) – Tuples of (degree, order) indicating the terms to save.
deformation_type (BodyDeformationTypes) – Type of gravity field variation for which the acceleration contribution is to be saved
identifier (str, default="") – Identifier for the deformation type. To be used in case multiple realizations of a single variation type are present in the given body. Otherwise, this entry can be left empty
 Returns
Dependent variable settings object.
 Return type
 inertial_to_body_fixed_rotation_frame(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the rotation matrix from inertial to bodyfixed frame to the dependent variables to save.
Function to add the rotation matrix from inertial to bodyfixed frame to the dependent variables to save. This requires the rotation of the body to be defined (either in the environment or the state vector). NOTE: a rotation matrix is returned as a nineentry vector in the dependent variable output, where entry \((i,j)\) of the matrix is stored in entry \((3i+j)\) of the vector (with \(i,j=0,1,2\)),
 Parameters
body (str) – Body for which the rotation matrix is to be saved.
 Returns
Dependent variable settings object.
 Return type
 tnw_to_inertial_rotation_matrix(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the rotation matrix from the TNW to the inertial frame to the dependent variables to save.
Function to add the rotation matrix from the TNW to the inertial frame to the dependent variables to save. It has the xaxis pointing along the velocity vector, the zaxis along the orbital angular momentum vector, and the yaxis completing the righthanded system. NOTE: a rotation matrix is returned as a nineentry vector in the dependent variable output, where entry \((i,j)\) of the matrix is stored in entry \((3i+j)\) of the vector (with \(i,j=0,1,2\)),
 Parameters
 Returns
Dependent variable settings object.
 Return type
 rsw_to_inertial_rotation_matrix(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the rotation matrix from the RSW to the inertial frame to the dependent variables to save.
Function to add the rotation matrix from the RSW to the inertial frame to the dependent variables to save. It has the xaxis pointing along the position vector (away from the central body), the zaxis along the orbital angular momentum vector, and the yaxis completing the righthanded system. NOTE: a rotation matrix is returned as a nineentry vector in the dependent variable output, where entry \((i,j)\) of the matrix is stored in entry \((3i+j)\) of the vector (with \(i,j=0,1,2\)),
 Parameters
 Returns
Dependent variable settings object.
 Return type
 inertial_to_body_fixed_313_euler_angles(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the 313 Euler angles for the rotation from inertial to bodyfixed frame to the dependent variables to save.
Function to add the 313 Euler angles for the rotation from inertial to bodyfixed frame to the dependent variables to save. This requires the rotation of the body to be defined (either in the environment or the state vector).
 Parameters
body (str) – Body for which the rotation angles are to be saved.
 Returns
Dependent variable settings object.
 Return type
 intermediate_aerodynamic_rotation_matrix_variable(body: str, base_frame: tudatpy.kernel.numerical_simulation.environment.AerodynamicsReferenceFrames, target_frame: tudatpy.kernel.numerical_simulation.environment.AerodynamicsReferenceFrames, central_body: str = '') tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the rotation matrix between any two reference frames used in aerodynamic calculations.
Function to add the rotation matrix between any two reference frames used in aerodynamic calculations. The list of available frames is defined by the
AerodynamicsReferenceFrames
enum. NOTE: a rotation matrix is returned as a nineentry vector in the dependent variable output, where entry \((i,j)\) of the matrix is stored in entry \((3i+j)\) of the vector (with \(i,j=0,1,2\)), Parameters
body (str) – Body whose dependent variable should be saved.
base_frame (AerodynamicsReferenceFrames) – Base reference frame for the rotation.
target_frame (AerodynamicsReferenceFrames) – Target reference frame for the rotation.
central_body (str) – Central body w.r.t. which the state of the body is considered.
 Returns
Dependent variable settings object.
 Return type
 periapsis_altitude(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the altitude of periapsis to the dependent variables to save.
Function to add the periapsis altitude of the current osculating orbit to the dependent variables to save. The altitude depends on the shape of the central body. This function takes the current (osculating) orbit of the body w.r.t. the central body, and uses this Kepler orbit to extract the position/altitude of periapsis.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 apoapsis_altitude(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the altitude of apoapsis to the dependent variables to save.
Function to add the apoapsis altitude of the current osculating orbit to the dependent variables to save. The altitude depends on the shape of the central body. This function takes the current (osculating) orbit of the body w.r.t. the central body, and uses this Kepler orbit to extract the position/altitude of apoapsis.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 central_body_fixed_spherical_position(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the spherical, bodyfixed position to the dependent variables to save.
Function to add the spherical position to the dependent variables to save. The spherical position is return as the radius, latitude, longitude, defined in the bodyfixed frame of the central body
 Parameters
 Returns
Dependent variable settings object.
 Return type
 central_body_fixed_cartesian_position(body: str, central_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the relative Cartesian position, in the central body’s fixed frame, to the dependent variables to save.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 body_mass(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the current body mass to the dependent variables to save.
 Parameters
body (str) – Body whose mass should be saved.
 Returns
Dependent variable settings object.
 Return type
 radiation_pressure_coefficient(body: str, emitting_body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the current radiation pressure coefficient to the dependent variables to save.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 total_mass_rate(body: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the total mass rate to the dependent variables to save.
Function to add the total mass rate to the dependent variables to save. It requires the body mass to be numerically propagated.
 Parameters
body (str) – Body whose mass rate should be saved.
 Returns
Dependent variable settings object.
 Return type
 gravity_field_potential(body_undergoing_acceleration: str, body_exerting_acceleration: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the gravitational potential to the dependent variables to save.
Function to add the gravitational potential to the dependent variables to save. The gravitational potential is defined by the bodies undergoing and exerting the acceleration.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 gravity_field_laplacian_of_potential(body_undergoing_acceleration: str, body_exerting_acceleration: str) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to add the laplacian of the gravitational potential to the dependent variables to save.
Function to add the laplacian of the gravitational potential to the dependent variables to save. The laplacian is defined by the bodies undergoing and exerting the acceleration.
 Parameters
 Returns
Dependent variable settings object.
 Return type
 minimum_body_distance(body_name: str, bodies_to_check: List[str]) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to compute the minimum distance between a given body, and a set of other bodies.
Function to compute the minimum distance between a given body, and a set of other bodies. This function takes the instantaneous position of body
body_name
, and each body in the listbodies_to_check
, and computes the body from this list closest tobody_name
. In this calculation, the positions of the bodies are evaluated at the current propagation time, and therefore light time is ignored. In addition, this functions does not consider visbility requirements (e.g. is a planet between two bodies). The dependent variable is of size 2, and consists of: (0) The distance between the body, and the closest other body; (1) The index frombodies_to_check
for which the distance (given by the first index) is closest tobody
Typically, this function is used to compute the closest body in a constellation of satellites. Parameters
 Returns
Dependent variable settings object.
 Return type
 minimum_visible_station_body_distances(body_name: str, station_name: str, bodies_to_check: List[str], minimum_elevation_angle: float) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to compute the minimum distance between a ground station, and a set of other bodies visible from that station.
Function to compute the minimum distance between a ground station, and a set of other bodies visible from that station This function takes the instantaneous position of the ground station
station_name
onbody_name
, and each body in the listbodies_to_check
, and computes the body from this list closest to this ground station, only taking into account those bodies from this list which are visible from teh ground station. For this function, visibility is defined by a single elevation angle cutoff (at the ground station) below which a body is deemed to not be visible. In this calculation, the positions of the bodies are evaluated at the current propagation time, and therefore light time is ignored. The dependent variable is of size 3, and consists of: (0) The distance between the ground station, and the closest visible body; (1) The index frombodies_to_check
for which the distance (given by the first index) is closest to thee ground station, and the body is visible. (2) Elevation angle for closest body. In case, no body is visible from the station, this function returns [NaN, 1, NaN]. Typically, this function is used to compute the closest body between a ground staion and a constellation of satellites. Parameters
body_name (str) – Body on which ground station is located, for which the distance to other bodies is to be computed.
station_name (str) – Name of ground station, for which the distance to other bodies is to be computed.
bodies_to_check (list[ str ]) – List of bodies for which it is to be checked which of these bodies is closest to
station_name
onbody_name
.minimum_elevation_angle (float) – Minimum elevation angle (at ground station) below which the distance to the
bodies_to_check
is not considered.
 Returns
Dependent variable settings object.
 Return type
 custom_dependent_variable(custom_function: Callable[[], numpy.ndarray[numpy.float64[m, 1]]], variable_size: int) tudatpy.kernel.numerical_simulation.propagation_setup.dependent_variable.SingleDependentVariableSaveSettings #
Function to compute a custom dependent variable.
Function to compute a custom dependent variable, which can be implemented by the user as a Python function. The custom dependent variable is typically dependent on the current properties of the environment (e.g. bodies in the environment) or a userdefined guidance class (or similar)
 Parameters
custom_function (Callable[[], numpy.ndarray].) – Function taking no input, and returning the custom dependent variable (as a numpy Nx1 array).
variable_size (int) – Size N of the array returned by the
custom_function
 Returns
Dependent variable settings object.
 Return type
Enumerations#
Enumeration of available propagation dependent variables. 
 class PropagationDependentVariables#
Enumeration of available propagation dependent variables.
Enumeration of propagation dependent variables supported by tudat.
Members:
mach_number_type :
altitude_type :
airspeed_type :
local_density_type :
relative_speed_type :
relative_position_type :
relative_distance_type :
relative_velocity_type :
radiation_pressure_type :
total_acceleration_norm_type :
single_acceleration_norm_type :
total_acceleration_type :
single_acceleration_type :
aerodynamic_force_coefficients_type :
aerodynamic_moment_coefficients_type :
rotation_matrix_to_body_fixed_frame_type :
intermediate_aerodynamic_rotation_matrix_type :
relative_body_aerodynamic_orientation_angle_type :
body_fixed_airspeed_based_velocity_type :
total_aerodynamic_g_load_type :
stagnation_point_heat_flux_type : No documentation found.
local_temperature_type :
geodetic_latitude_type :
control_surface_deflection_type :
total_mass_rate_type :
tnw_to_inertial_frame_rotation_type :
rsw_to_inertial_frame_rotation_type :
periapsis_altitude_type :
apoapsis_altitude_type :
total_torque_norm_type :
single_torque_norm_type :
total_torque_type :
single_torque_type :
body_fixed_groundspeed_based_velocity_type :
keplerian_state_type :
modified_equinoctial_state_type :
spherical_harmonic_acceleration_terms_type :
spherical_harmonic_acceleration_norm_terms_type :
body_fixed_relative_cartesian_position_type :
body_fixed_relative_spherical_position_type :
total_gravity_field_variation_acceleration_type :
single_gravity_field_variation_acceleration_type :
single_gravity_field_variation_acceleration_terms_type :
acceleration_partial_wrt_body_translational_state_type :
local_dynamic_pressure_type :
euler_angles_to_body_fixed_type :
current_body_mass_type :
radiation_pressure_coefficient_type :
custom_type : No documentation found.
gravity_field_potential_type :
gravity_field_laplacian_of_potential_type :
 property name#
Classes#
Functional base class to define settings for variables. 

VariableSettingsderived class to define settings for dependent variables that are to be saved during propagation. 

SingleDependentVariableSaveSettingsderived class to save a single acceleration (norm or vector) during propagation. 
 class VariableSettings#
Functional base class to define settings for variables.
This class is a functional base class for defining settings for variables. Any variable that requires additional information in addition to what can be provided here, should be defined by a dedicated derived class.
 class SingleDependentVariableSaveSettings#
VariableSettingsderived class to define settings for dependent variables that are to be saved during propagation.
Functional base class for defining settings for dependent variables that are to be computed and saved during propagation. Any dependent variable that requires additional information in addition to what can be provided here, should be defined by a dedicated derived class.
 class SingleAccelerationDependentVariableSaveSettings#
SingleDependentVariableSaveSettingsderived class to save a single acceleration (norm or vector) during propagation.
Class to define settings for saving a single acceleration (norm or vector) during propagation. Note: this acceleration is returned in the inertial frame!